

THINGS I LEARNED IN 2025 PRODUCTION YEAR

- Seed radicle determines your ear size
- In-furrow N, P, or K: if it burns your radicle, you are already behind in yield
- I prefer biology only in-furrow
- NPK 2x3 or other forms of application
- Phos in-furrow can make your roots lazy

HOPE FOR ROI IN 2026 CROP PLAN

- Skip your dap and map—use biology—someone you trust—
- Make sure your manure has some ammonia nitrogen in it
- Wet manure is nitrate dominate (tall corn)
- Manage nitrogen more efficiently
- You have to use biology to help you become more efficient
- Or am I in the Non-profit kingdom- just NPK

6436 YIELD DATA

6436 Versus	Yld (Bu/A)	% Mst	Y/M Ratio	% SL	% RL	Test Wgt	# of Locs	Years
6854 Traited Version	4.7	0.7	-0.4	0.5	0.7	0.9	121	2023-2024
Dekalb DKC110-41	4.4	0.5	-0.1	0.4	0.6	-0.4	60	2024
7265	7.6	-0.2	0.7	-0.6	0.0	0.4	156	2023-2024
Dekalb DKC111-33	14.8	-0.2	1.0	0.8	1.0	-1.9	96	2023-2024
Pioneer P1170AM	4.2	-0.2	0.4	0.0	-0.5	-0.4	121	2023-2024
Pioneer P14830AML	2.3	-0.7	0.9	0.2	0.7	0.5	77	2024
8864 Traited Version	9.8	-1.2	1.3	0.8	-0.1	1.1	129	2023-2024
Traited Competitor	4.4	-1.5	1.2	0.0	0.3	-1.4	113	2023-2024

7445 YIELD DATA

Yield Tri	ial Data 2024									
Fields: 5	51									
Entry #	Pedigree	RM	Yield	Yield	Yield	%Moistur	y/m	%StalkLodgin	%RootLodgin	TW
. T	7.	-	Mea	Differenc	%Mea ▼	e Mea 🔻	Mei▼	g Mean 🔻	g Mean 🔻	Mear 🔻
28	7445	112	269.7	10.76	104.16%	18.4	14.82	1.9	2.4	58.0
24	7261	111	269.0	10.02	103.87%	17.6	15.60	0.6	1.1	59.1
30	7445 Traited Version	112	266.4	7.48	102.89%	17.9	15.21	1.0	2.5	57.4
2	DKC111-35RIB	111	265.9	6.99	102.70%	17.8	15.22	0.6	0.7	60.1
4	6755 Traited Version	110	262.4	3.47	101.34%	17.5	15.27	0.4	3.8	57.9
3	P1185AM	111	261.6	2.70	101.04%	18.1	14.75	0.2	1.2	59.8
21	DKC62-70RIB	112	260.0	1.08	100.42%	17.9	14.74	0.8	0.9	59.7
23	P1222AM	112	258.7	-0.25	99.90%	17.4	15.24	0.2	1.1	58.9
1	DKC59-82RIB	109	257.0	-1.95	99.25%	17.0	15.44	0.7	1.1	58.0
41	P1136AM	111	254.9	-4.07	98.43%	17.9	14.59	0.4	0.7	58.8
20	DKC62-53RIB	112	253.1	-5.87	97.73%	17.5	14.79	1.0	0.6	58.7
50	P1359AM	113	253.0	-5.95	97.70%	18.2	14.30	0.0	2.8	58.8
22	DKC62-89RIB	112	247.9	-11.02	95.74%	18.0	14.15	1.1	1.6	58.5
*		Mn	258.2			17.9	14.71	0.7	1.6	58.5
*		#Locs	50			50	50	30	26	48

TOPICS FOR TODAY

- What makes kernel flex to .75 inches long
- Germination facts (why cold germ)
- Prairie team efforts on research and development
- Nitrate nitrogen impact on growing crop
- Microbials, the values—the platform is changing

FACTS ABOUT FLEX HYBRIDS

- Some hybrids flex-others don't flex
- I prefer hybrids that have kernel flex
 - Correct form N makes flex

KERNEL FLEX

- Kernel flex comes from the correct form of nitrogen (amine, ammonium) after v10
- Organic forms of nitrogen are these amine/ammonium forms (fertilizer/dead microbes)
- What about phosphorus this late? Stimulates energy manufacturing to fill kernels
- Too much nitrate N encourages disease-stalk cannibalism resulting in smaller density kernel

KERNEL FLEX

- Urea liquor, 21-0-0 as a foliar is ammonium N. Add 1 lb. sugar/gal, up to 4 gal/acre (v5)
- .50-inch-long kernel: 225 bu./ac range; .75-inch-long kernel: 300 bu./ac range
- · Need to be using genetics that allow kernel flex,
 - 7445
 - 6878
 - 6755
 - 8864
 - 6436

HOW DO I GET KERNEL FLEX?

- Must have amine/ammonium to go to kernels. Stabilize N and apply more 12-0-0-26
- Apply kelp if you have applied a lot of 28/32 with no sulfur and it's been wet. Kelp helps convert nitrate back into ammonium during wet summers. (Nitrate stuck in the stalks)
- Ammonium N and sulfur helps build thicker, wider leaves to collect more sunlight

HOW DO I GET KERNEL FLEX

- Use N Gauge probiotic N stabilizer at 1 qt/25 gal of N solutions to improve N forms
- Use a minimum of 75%/25% -28%/thiosulfate blend, preferably 50%/50% or 25%/75%
- Typically, you need less total units of N to increase the yield when using correct forms
- Don't buy anything with nitrate in it for late side dressing or Y-drop unless you have to

COLD GERMS 2024-2025

- Cold germ average last year: 96.2%
- Cold germ average this year: 96.7%

- Soybean seed after harvest, is cooled immediately
 - Soybean seed ages in the bin when it's not cooled down

PRAIRIE R & D TEAM VALUES

- We look at most research sites; versus look at computer models only
- Our team monitors conventional hybrids only; this is our total focus for the conventional and organic farmer
- We ask ourselves the question, "Do I want 1600 acres of this hybrid? Is it too risky?"
- Their job is to get the correct hybrid designated to each sales area
 - A 20-75 bu per ac value

PRAIRIE TEAM EFFORTS: SEED PURITY

- Dribble sample system: continuous, representative sample of each lot
- All seed lots are tested twice for GMO contamination (PCR and grow-out test)
- Seed samples are sent to Hawaii in the winter to check purity (for selfs and outcrosses)
- All seedstock is tested for GMO contamination

NITRATE NITROGEN

- Corn needs nitrate form early in season
- Nitrate makes stalks, not grain
- Too much irrigation makes all N go to nitrate (after flowering); not good
- If irrigating excessively, add 1-2 pints of kelp per acre to the plants or through the pivot irrigation, at pollination and during grain fill

Nitrate Nitrogen

VALUE OF AMMONIA NITROGEN

- Corn yields lots more when the soil converts nitrate to ammonium —never do nitrate late
- Higher yields
- Shorter stalk height, less stalk lodging
- Bigger ears
- Longer kernel depth
- Better stalk integrity
- Less disease and insect pressure

VALUE OF AMMONIA NITROGEN

CORN YIELD IS HINDERED OR REDUCED WHEN,

- Too much nitrate N versus ammonia N
 - Nitrate N does not move in the corn plant; it goes to the top and stays there
 - Kernel fill and test weight are determined by ammonia form of N available late after v10
- Biology is not converting nitrate to ammonia N
- Nitrate N is applied late season Y-drop
- Wet manure is only source of nitrogen (needs to be treated)

AMMONIA NITROGEN WITH A MANURE PROGRAM

- Wet manure is nitrate dominate
- Lagoon manure needs to be treated with Bio Chop and Magneto to stabilize N

- Dry manure needs to be inoculated with Bio Chop and Magneto
- This makes your manure more efficient:
 - So, you don't get tall corn problem

CORN PLANT TO SOIL-HOW DOES IT WORK?

Corn **Enzymes** plant make Sugar **Proteins** makes **Aminos** makes carbonic make make sugar nitrogen amino through proteins enzymes acids for the root plant exudates

CARBON TO NITROGEN RATIO

• Ideal ratio is 14 parts carbon—1 part nitrogen (you release lots of N to corn plant)

Non-GMO corn fodder digests easier, takes less N

• 18 to 1 ratio and higher, you tie up lots of your N

MICROBES...WHAT DO THEY DO

- Microbes truck nutrients and make minerals available to the plant
- Corn plants give signals to microbes on what they need
- They respond to signals given off by plants

MICROBES...

- Microbes breathe in oxygen/give off carbon dioxide, feed corn plants
- Sunlight striking the leaf in combination with carbon dioxide, gas, & water vapor generates sugar in plant cells. It feeds plant biology at roots and signals plant needs to soil biology
- Manure feeds microbes, stimulating carbon dioxide/nutrient release, which creates food and nutrition for the plant encouraging much healthier and higher yielding plants

VALUE OF MICROBES

- Microbes help you get to a .50 nitrogen to bu. ratio (farmers be more efficient)
- Microbes need to eat N to break down the complex load of old fodder and plant stuff
- If you have too much carbon, microbes eat up N and plants can't get any. Microbes eat first at the table of the soil and plants get the leftovers.

VALUE OF MICROBES

- Once microbes die, they release their N as amino acids and proteins. The more cycles of life and death, rainfall events, or cycles or periods of days where microbes die and other microbes eat them up, the more N you get. And it's mostly organic N
- That's a probiotic approach. Eat up all the N and release as organic aminos. (N Gauge)

BIOLOGY

- Sleeping farm performance—biology needs sulfur molasses
- Biology's enemy is hard pan
- Plants are designed to feed soils as much as soils are designed to feed plants
- If P1-P2 ratio is 1-1, your soil biology is asleep and not doing its job. (Microbes are sleeping)

SULFUR-BIOLOGY

- Sulfur is the glue to bond biology to nutrients
- Sulfur helps biology communicate to root exudates, essential amino acids and proteins that make up enzymes which do the heavy lifting in real life, biochemical reactions
- Hydrogen high? (soil test) Potentially need in line ripping to allow water to wash away

A NEGLECTED MICRO-COPPER SULFATE

- Copper sulfate-be careful on applied rates,
 7# per year-max
 - Only for soils and ruminate animals (not humans)

The values

- Increases yield levels (high iron soil ties up manganese)
- Helps to mobilize the excess iron in our soils
- Helps to make nitrogen convert to ammonia form
- Makes so corn has less green snap
- Fights off fungus and disease and insects
- Fights off stalk rot in fall

WHY STALK ROT HAPPENS

Pep-carboxylase enzyme

- When not enough ammonia nitrogen is available to fill kernels, the corn plant realizes there is a problem
- It forms this enzyme-pep-carboxylase-to cannibalize the stalk. That breaks down sugar in base of stalk to fill kernels and degrades the stalk
- When this happens, the chemistry is set up to bring stalk rots into the plant; Fusarium, Gibberella, etc.
- Corn plant says, "Not the right tools, let's start over."

PYTHIUM

- Swims in soil moisture
- Seed treatment helps to hold it off
- Pythium feeds on phosphorus
- In-furrow remedy:
 - 1. Magneto (biological) from SPNC protects the seed radicle root and helps new roots continue to grow
 - 2. Defender from SPNC starves the pythium for oxygen PO3 instead of PO4

LEAF DISEASES

Southern Rust–from the southwest

Northern Leaf Blight–happens 10 days after first cool night

Tar Spot-cool, damp, high humidity conditions

HIGHEST YIELD POTENTIAL HYBRIDS

- 8864/8861
- 7445
- 6436
- 6755
- 4991
- 3054/3051
- 2311
- 581
- 1320
- 321

SEEDS

NON-GMO | ORGANIC

YIELD CAPS

- Nitrate nitrogen-applied late-stops kernels from growing in length
- Too much irrigation makes nitrogen in soil convert to nitrate, starving the plant for the ammonium form
- Kernel fill is determined by the amount of ammonia nitrogen available or applied at V10
- Race horse hybrids feed 6 weeks post tassel on ammonium N

